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familie geschlossen werden. Zu jedem Stab gibt es
4 Stébe, die als nichste Nachbarn zu bezeichnen sind.
Das Auftreten ausgeprigter Maxima liess weiterhin
vermuten, dass in der Struktur geordnete Bereiche
von maximalem Ordnungsgrad vorliegen, eine Ver-
mutung, die durch die Symmetrie der Intensitits-
verteilung in den diffusen Scheibchen eine weitere
Stiitze findet.

Es wird gezeigt, in welcher Weise die experimentell
zugénglichen Intensititen der Maxima auf den dif-
fusen Scheibchen zur Berechnung von verallgemeiner-
ten Patterson- und Elektronen-Dichteprojektionen
herangezogen werden konnen, wie mit ihrer Hilfe
zwischen ketten- und ringformigen Anionen und
zwischen ‘b-Fall’ und ‘n-Fall’ unterschieden werden
kann.

Meinen Mitarbeitern, Frau H. Grell-Niemann, Frau
Ch. Krause und Herrn Dr. P. Sedlacek méchte ich fiir
viele fruchtbare Diskussionen danken.
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In Vor-

A Method for the Determination of Complex Cubic Metal Structures
and its Application to the Solution of the Structure of NaCd,*

~ By STEN SAMsON ‘
Gates and Crellin Laboratories of Chemistry, California Institute of Technology, Pasadena, California, U.S.A.

(Received 21 March 1963 and in revised form 17 July 1963)

Structures of intermetallic compounds of certain cubic space groups can be completely surveyed or
determined with the use of a single map, the packing map, apparently irrespective of the size of
the unit cell and the number of parameters involved. For certain cubic space groups two or perhaps
three packing maps will have to be used. Sections through coordination polyhedra represented with
transparent templates can be fitted together on the packing map which then guides the search for a
reasonable structural motif. This technique is of particular value if the atomic arrangement is such
as to render the interpretation of Patterson maps extremely difficult. The structure of NaCd,
(cube edge a,=30-56 A, space group Fd3m (0})) was derived with the use of a single packing map,
avoiding the time-consuming construction of three-dimensional models.

Introduction

The method described here utilizes the idea of Bragg
& West (1926) to determine all the possible positions
of the atoms’in the unit cell relative to their symmetry
elements through evaluation of the domains of neigh-
bors that must not overlap. It is well known that if
a structure is sufficiently simple it can be determined
this way by straightforward, completely logical argu-

* Contribution No. 2951 .from the Gates and Crellin
Laboratories of Chemistry. The work reported in this paper
was carried out under Contract No. Nonr-220(33) between
the California Institute of Technology and the Office of
Naval Research.

ments. If a structure is of considerable complexity,
however, the purely geometrical reasoning can only
serve as a guide in the search for a reasonable struc-
tural motif and guesses have to be made as to the
structural elements (coordination polyhedra efc.) as
well as to other features that may be exhibited in
the structure. This method of treating structure prob-
lems was termed the stochastic method by Pauling
(1933, 1955). So far, it has apparently been carried
out only with the use of three-dimensional models.
The present method represents a refinement of the
stochastic method of treating crystals of complex
cubic intermetallic compounds, Tt differs from the
methods deseribed by Bragg & West (1926) and
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Pauling (1933, 1955) inasmuch as it eliminates the
time-consuming construction of three-dimensional
models. This is done through the use of two-dimen-
sional graphs, the ‘packing maps’, which at a glance
provide the necessary information regarding the
geometrical requirements for packing of coordination
polyhedra to fill space. Sections through such poly-
hedra or through smaller or larger, more-or-less
symmetrical, atom complexes may be represented with
transparent templates; these can be fitted together
on the packing map, and the map then guides the
search for a reasonable structural motif much more
efficiently than would a three-dimensional model.

It was found that structures of certain cubic space
groups can be completely determined and described
with the use of a single packing map, apparently ir-
respective of the size of the unit cell and the number
of the atomic positional parameters involved.

So far, trial structures with up to 48 positional
parameters and 32 crystallographically different posi-
tions with space-group symmetry F43m (7%) have
been completely surveyed, each one requiring only a
single packing map. The atomic arrangement in the
crystal of NaCd: (cube edge ao=30-56 i, space group
Fd3m (0]) was derived, again, with the use of a single
map.

The determination of such structures with the use
of three-dimensional models would require a formid-
able effort, the total number of atoms per smallest
unit cube being between 1100 and 1200. The applica-
tion of Patterson maps to such structures or other
more or less direct methods did not seem to offer
much promise for success.

The most useful planes

Cubic crystals of metals and intermetallic compounds
have always been observed to incorporate atoms in
special positions. This feature probably arises from the
difficulty or perhaps impossibility of achieving a
cubic space-filling structure by utilizing general posi-
tions alone. One may profitably begin with the hypo-
thesis that a special position is always needed to define
the center of a coordination shell described solely or
partially by a general position. Hence, if in a cubic
crystal the configuration of atoms is known around
each point that can be defined by a special position,
the atomic arrangement of the crystal is completely
determined.

In each one of the space groups F23, P2,3, Fd3,
Pa3, F432, F43m, and F43c every special position
places at least one point on the (110) plane*. To
determine a structure having one of these space groups

* Throughout this discussion it is understood that the origin
of coordinates of the cube is placed in accordance with the
Space Group Tables given in International Tables for X-ray
Crystallography (1952). The (100) plane and the (110) plane
referred to below are always those passing through the origin
of the cube.

DETERMINATION OF COMPLEX CUBIC METAL STRUCTURES

it is necessary only to determine the coordination
shell around each atom or available site that is located
on the (110) plane.

A similar rule applies to structures of the space
groups F4,32, P4,32, P4,32, Fd3m, Fd3c except that
the special positions of the kind §, «, } + 2, efc. even-
tually may have to receive special treatment. These
positions are of such a nature, however, that they
most likely will represent vertices of coordination
shells around single atoms or available sites on the
(110) plane, as will be seen in the following section.
In the twelve space groups just referred to, the (110)
plane shall be called ‘the most useful plane’.

Most of the remaining cubic space groups have two
most useful planes, i.e. the (100) plane and (110) plane
which will have to be investigated simultaneously. In
some rare cases it may be necessary to investigate one
especially selected additional plane.

The packing map

A means of recognizing the possible configurations of
atoms around single atoms on the most useful plane
is the packing map, an example of which is shown in
Fig. 1. This map has been drawn for the (110) plane
of a crystal of space group Fd3m and cube edge
ao=30-6 A, scale 1 A=1 cm on the original map.

Fig. 1. Packing map for the (110) plane for a cube of edge
a,=30-6 A, space group Fd3m.
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Fig. 2. The truncated tetrahedron.
Fig. 3. The cubo-octahedron.
Fig. 4. The icosahedron. In Figs. 2, 3, and 4 the most practical representation of the polyhedra with respect to packing maps
is shown at (e) in each case.

The points ¢ and b are defined by the two eightfold
positions, 000 efc. and 00} efc. respectively; ¢ and d
are points of the two 16-fold positions %43 etc. and
$%% elc. respectively, which are centers of symmetry.
The letters correspond to the notations used for this
space group in the International Tables for X-ray Crys-
tallography (1952), p.340. The same notations are
referred to below.

The lines ¢ and f are the loci of points of one degree
of freedom, zax, etc. and 00z, efc., described by the
space group positions e and f respectively. If rigid
spheres of radius 1-40 A, equal to one-half the average
interatomic distance assumed in the crystal, are placed
in these positions the centers of such spheres on the
(110) plane are confined as indicated in Fig. 1.

The points with two degrees of freedom, xxz, efc.,
positions g, are confined within the ten areas bounded
by solid lines. The indentation ¢ can be seen to be
necessary to avoid interference of the spheres as they
approach the center of symmetry. If G is the point
zxz, its surrounding sphere of radius 1-40 cm is in
contact with two equivalent contiguous spheres. The
centers of these two spheres, which we call +G and

— @, project normally onto the point +@G. Since e is
a threefold axis of symmetry, i.e. G, +@G, and —G
are at the corners of an equilateral triangle, the point
+ @ is at a distance 7/)/3 from the line e, when G is
at a distance 2r/)/3 from e, where 7 is the radius of
the spheres. The broken lines are referred to as
‘plus—minus’ lines. A ‘plus-minus’ point can never lie
between the solid line e and a broken line.

Positions 96A(3, x, 1 —=, etc.) describe plus-minus
points located on the broken lines #. These points are
at the vertices of a hexagon around c, the size of which
is determined by z.

The areas limited by the dotted lines 7 and <’ and
the solid line ¢’ are ‘plus—-minus’ fields for the general
set 192¢. The isosceles triangle of the sides ¢’ can,
again, be seen to be necessary to avoid interference
of the spheres as they approach the center of symme-
try.

The representation of coordination polyhedra

A few examples of how coordination polyhedra may
be represented for their immediate recognition on
the packing map are given below.
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A very frequently observed coordination polyhedron
is the symmetrically truncated tetrahedron bounded
by four hexagons and four triangles (Fig.2(a)). A
mirror plane of the polyhedron traces the polygonal
section shown in Figs. 2(c) and (d). The packing of
atoms around such a polyhedron is explored by de-
scribing around each vertex a sphere of a radius equal
to the distance d between the vertex and the center
of its assumed nearest neighbor outside the polyhedron.
The section plane through such an arrangement of
spheres is shown in Fig. 2(e). For the sake of simplicity
all the distances are taken to be equal in this figure.
The center of any circle of radius d is allowed to lie
upon the circumference of any other circle but not
inside it, while the center of any ‘plus-minus’ circle
representing two contiguous spheres, one above and
one below the section plane, is allowed to be as close
as $d}/3 to the center of a circle of radius d.

Fig. 3 shows a cubo-octahedron which is represented
according to the same principles. Fig. 4 demonstrates
how the icosahedron can be derived through deforma-
tion of a cubo-octahedron. The three mutually per-
pendicular squares in Fig. 3(b) have been substituted
by rectangles in Fig. 4(b); the sides of the rectangles
are ¢ and b=1-62a, where the side b is also the diag-
onal of the pentagon of side a as shown in Fig. 4(c).
The representation of the icosahedron according to
Fig. 4(e) was found to be the most perspicuous one
with regard to packing maps so far explored. An
example of the usefulness of this representation can
also be found in an earlier paper (Samson, 1949),
which, however, does not show the packing map.

It is seen that the circles around the vertices of the
polyhedron shown in Fig. 2(¢) leave a free area around
the center, while in Fig. 3(e) the circles intersect at
the center and in Fig. 4(e) overlap at the center. This
feature demonstrates the metrical nature of these
polyhedra. With twelve contiguous spheres of equal
size at the vertices of the truncated tetrahedron, it
is possible to accommodate a sphere 34:5%, larger in
radius at the center, since (rcent/rvert)=(}/11/)/2)—1=
1-345 (Fig. 2(e)) while for the icosahedron the central
sphere is nearly 10% smaller than the sphere of the
vertex (Pauling, 1947). The cubo-octahedron corre-
sponds to a radius ratio equal to unity, as is well
known.

Packing of coordination polyhedra

Fig. 5 represents a packing map of the (110) plane of
a cube of edge a9=258 A, space group F43m, r=
1-25 A (smallest assumed radius). Transparent tem-
plates of polyhedra, such as are shown in Figs. 2 and
3, are held in position with pins.

The discs around e; and +e; (Fig. 5) represent a
positive tetrahedron, which is surrounded by a nega-
tive tetrahedron (e, and +e2). The discs at f; are at
the vertices of an octahedron. If more discs are added
at the points 4;, k2, and ks and the corresponding
+ points, as is indicated with arrows, the arrangement

DETERMINATION OF COMPLEX CUBIC METAL STRUCTURES

of points around f; is similar to that shown in Fig.
4(e); ¢.e. f1 is at the center of an icosahedron.

It is obvious that transparent templates of sections
through large atom complexes commonly observed in
complex metal structures may appreciably facilitate
the search for a reasonable structural motif. Such a
template, which represents an atom complex observed
in the y-brass type structures is placed at point d,
Fig. 5.

The derivation of structures of extreme
complexity

General considerations

There exist a number of cubic intermetallic com-
pounds for each of which the number of possible
atomic arrangements provided by the theory of space
groups appears to be so great that a successful attack
on the problem of solving the structure may seem
hopeless. A more penetrating study of such problems
will, however, in general reveal that there are only a
very limited number of atomic arrangements that are
in accord with known fundamental structural prin-
ciples and accordingly need be considered as possible
trial structures, at least in the initial stage.

A profitable approach to the problem of finding a
reasonable structural motif is, of course, to consider
structural elements that occur over and over again
in crystals of complex intermetallic compounds. One
of the most frequently observed coordination shells,
the icosahedron, appears to be present in almost every
complex cubic metal crystal. It is accordingly ad-
visable to explore the packing map with templates of
the kind shown in Fig. 4(e) and to mark off the points
and regions at which such a coordination shell may be
accommodated. In cases where there is reason to
assume the simultaneous occurrence of certain types
of smaller and larger coordination shells, it will be
most profitable to use the largest possible shells as a
starting point, as will be shown below.

The derivation of the structure of NaCds

The assumption was made that in the crystal of
NaCd: (space group Fd3m, cube edge ao=230-56 A)
many of the large atoms, the sodium atoms, have
sixteen ligates, twelve cadmium atoms that are at the
vertices of a truncated tetrahedron such as is shown
in Fig. 2 and four sodium atoms that are located out

from the centers of the hexagons of the truncated
tetrahedron. The resulting polyhedron, in previous
papers (Samson, 1958, 1961, 1962) referred to as the
Friauf polyhedron, is very frequently observed in
crystals containing atoms with metallic radii differ-
ing by about 15 per cent or more from one another.
It was first observed in the Friauf phases MgCuz and
MgZn. (Friauf, 1927a, b).

The packing map drawn for this crystal as shown in
Fig. 1 was accordingly explored with the use of trans-
parent templates of truncated tetrahedra of approxi-
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Fig. 5. Exploration of the packing spheres with the use of a packing map of the
(110) plane of a cube of edge 258 A, space group F43m,
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(b)

Fig. 6. The two trial structures derived for NaCd,. (a) The correct structure. (b) The incorrect structure.
The latter motif may apply to Mg,Al;.
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mately the correct size as determined by the chart
itself (see template at point b, Fig. 6a).

It was quickly recognized that the unit cube is most
efficiently packed if the truncated tetrahedra are
arranged according to Fig. 6(a). It is seen that five
such tetrahedra are located about an approximate
fivefold axis of symmetry through the two points B,
which represent vertices of an octahedron of 7' sym-
metry such as is described in the previous paper
(Samson, 1962). Such sets of five Friauf polyhedra,
referred to as the F5 polyhedra, (Samson, 1962) share
in their turn two additional Friauf polyhedra, one
around & and the other around e, Fig. 6(a), in ac-
cordance with the 4 axis and the d-glide. This ar-
rangement accounts for 1160 atoms distributed over
16 crystallographically different positions.

The remaining space was next explored with trans-
parent discs, which for simplicity have been partially
substituted by circles in Fig. 6(a). Thirty-two more
atoms (32es) were thus located; these are indicated
with the transparent disecs placed at the points es.
The unit cube hence contains 1192 atoms.

Fig. 6(a) describes completely the asymmetric unit
of the crystal and provides the approximate positional
parameters for each crystallographically different
atom. For a more detailed description of the structure
refer to the earlier paper (Samson, 1962).

Fig. 6(b) represents an alternative trial structure for
NaCd: which is as reasonable as the one just described.
It was obtained by rotating the Friauf polyhedron
centered at point & 90° around the [001] direction and
rearranging some of the other atoms. This motif of
structure places 1176 atoms per unit cube, but was
found by comparison of observed and calculated X-ray
data not to be the motif of NaCdz. It remains, how-
ever, a possible trial structure for § MgzAls (Samson,
1962).

It probably would have been possible to deduce the
trial structure by using icosahedra as a starting point.
Only a few icosahedra need be placed around their
appropriate points, say the points ¢ and ¢, in order
to suggest the existence of Friauf polyhedra, say
around ez and gz (Fig. 6(a)), and from here on there is
not too much reasonable latitude for positions of the
remaining atoms if due judgment is applied. It is
most convenient, however, to use as a starting point
the largest atom complexes anticipated in the struc-
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ture, here the Friauf polyhedra. This becomes evident
if one considers that there are only 280 Friauf poly-
hedra in the unit of structure, but that these in their
turn produce 912 other polyhedra of which 528 are
icosahedra. The icosahedron represents a 13-atom
complex whereas a Friauf polyhedron accommodates
17 atoms, ¢.e. 319% more.

Miscellaneous considerations

The technique suggested will in general require con-
siderable judgment and knowledge of fundamental
structural principles. A few cases have been experi-
enced, however, where the trial structure for a fairly
complex crystal, for instance the crystal of MgsCrzAlsg
(Samson, 1958), was almost rigorously derived with
the technique described here. The derivation of this
structure from Patterson maps would certainly have
required considerable effort and time, if it would
have been possible at all.

No test has as yet been made of the applicability
of this method to structures other than those of
complex intermetallic compounds. It seems never-
theless very likely that it will be useful for the study
of any cubic crystal that is to be treated by the
stochastic method, in particular if the structure is
reasonably well packed, such as for example, structures
of certain silicate minerals.

I thank Prof. Linus Pauling for his interest in this
work. I also thank Prof. J. H. Sturdivant for valuable
suggestions and discussions.
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