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familie geschlossen werden. Zu jedem Stab  gibt  es 
4 St~be, die als n~chste Nachba rn  zu bezeichnen sind. 
Das Auf t re ten  ausgepr~gter  Maxima liess weiterhin 
vermuten ,  dass in der  S t r u k t u r  geordnete Bereiche 
yon max ima lem Ordnungsgrad  vorliegen, eine Ver- 
mutung ,  die durch die Symmet r ie  der  Intensit~tts- 
vertei lung in den diffusen Scheibchen eine weitere 
Stiitze f indet.  

Es  wird gezeigt, in welcher Weise die experimentel l  
zug~nglichen In tens i t~ ten  der Maxima auf  den dif- 
fusen Scheibchen zur Berechnung yon verallgemeiner-  
t en  Pat te rson-  und  Elekt ronen-Dichteprojekt ionen 
herangezogen werden kSnnen, wie mit  ihrer Mille 
zwischen ket ten-  und r ingfSrmigen Anionen und 
zwischen 'b-Fall '  und 'n-Fal l '  unterschieden werden 
kann.  

Meinen Mitarbei tern,  F r a u  H. Grell-Niemann, F rau  
Ch. Krause  und H e r r n  Dr. P. Sedlacek mSchte ich ffir 
viele f ruch tbare  Diskussionen danken.  
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A Method for the Determinat ion  of C o m p l e x  Cubic Metal  Structures  
and its Appl icat ion to the Solut ion of the Structure  of NaCd2* 
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Gates and Crellin Laboratories of Chemistry, California Institute of Technology, Pasadena, California, U.S.A. 
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Structures of intermetallie compounds of certain cubic space groups can be completely surveyed or 
determined with the use of a single map, the packing map, apparently irrespective of the size of 
the unit cell and the number of parameters involved. :For certain cubic space groups two or perhaps 
three packing maps will have to be used. Sections through coordination polyhedra represented with 
transparent  templates can be fitted together on the packing map which then guides the search for a 
reasonable structural motif. This technique is of particular value if the atomic arrangement is such 
as to render the interpretation of Patterson maps extremely difficult. The structure of NaCd 2 
(cube edge a 0 = 30.56 A, space group Fd3m (03)) was derived with the use of a single packing map, 
avoiding the time-consuming construction of three-dimensional models. 

Introduction 

The method  described here utilizes the  idea of Bragg 
& West  (1926) to determine all the  possible positions 
of the  atoms: in the  uni t  cell relat ive to their  s y m m e t r y  
elements th rough evalua t ion  of the  domains of neigh- 
bors t h a t  mus t  not  overlap. I t  is well known t h a t  if 
a s t ruc ture  is sufficiently simple i t  can be de termined 
this way  by  s t r a igh t fo rward ,  completely logical argu- 

* Contribution No. 2951 .from the Gates and Crellin 
Laboratories of Chemistry. The work reported in this paper 
was carried out under Contract No. Nonr-220(33) between 
the California Institute of Technology and the Office of 
Naval Research. 

ments .  I f  a s t ruc ture  is of considerable complexity,  
however,  the  pure ly  geometr ical  reasoning can only 
serve as a guide in the  search for a reasonable  struc- 
tu ra l  mot i f  and  guesses have  to be made  as to the  
s t ruc tu ra l  e lements  (coordination polyhedra  etc.) as 
well as to other  fea tures  t h a t  m a y  be exhibi ted in 
the s t ructure .  This me thod  of t rea t ing  s t ruc ture  prob- 
lems was t e rmed  the  stochastic method  by  Paul ing  
(1933, 1955). So far ,  it  has appa ren t ly  been carr ied 
out only wi th  the  use of three-dimensional  models.  

The present  me thod  represents  a re f inement  of the  
stochastic method  of t rea t ing  crystals  of complex 
cubic intermetal l ic  compounds.  I t  differs f rom the  
methods  described by  Bragg & Wes t  (1926) and  
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Pauling (1933, 1955) inasmuch as i t  eliminates the 
time-consuming construction of three-dimensional 
models. This is done through the use of two-dimen- 
sional graphs, the 'packing maps' ,  which at  a glance 
provide the necessary information regarding the 
geometrical requirements for packing of coordination 
polyhedra to fill space. Sections through such poly- 
hedra or through smaller or larger, more-or-less 
symmetrical,  a tom complexes may  be represented with 
t ransparent  templates;  these can be f i t ted together 
on the packing map, and the map then guides the 
search for a reasonable s t ructural  motif much more 
efficiently than  would a three-dimensional model. 

I t  was found tha t  structures of certain cubic space 
groups can be completely determined and described 
with the use of a single packing map, apparent ly  ir- 
respective of the size of the unit  cell and the number 
of the atomic positional parameters  involved. 

So far, tr ial  structures with up to 48 positional 
parameters and 32 crystallographically different posi- 
tions with space-group symmet ry  F 4 3 m ( ~ d ) h a v e  
been completely surveyed, each one requiring only a 
single packing map. The atomic arrangement in the 
crystal  of NaCd2 (cube edge a0-30 .56  A, space group 
Fd3m (0~) was derived, again, with the use of a single 
map. 

The determination of such structures with the use 
of three-dimensional models would require a formid- 
able effort, the total  number  of atoms per smallest 
unit  cube being between 1100 and 1200. The applica- 
tion of Pat terson maps to such structures or other 
more or less direct methods did not seem to offer 
much promise for success. 

The m o s t  useful  planes  

Cubic crystals of metals and intermetallic compounds 
have always been observed to incorporate atoms in 
special positions. This feature probably arises from the 
difficulty or perhaps impossibility of achieving a 
cubic space-filling structure by  utilizing general posi- 
tions alone. One may  profi tably begin with the hypo- 
thesis tha t  a special position is always needed to define 
the center of a coordination shell described solely or 
part ia l ly  by  a general position. Hence, if in a cubic 
crystal  the configuration of atoms is known around 
each point tha t  can be defined by  a special position, 
the atomic arrangement of the crystal  is completely 
determined. 

In  each one of the space groups F23, P213, Fd3, 
Pa3, $'432, F43m, and F43c every special position 
places a t  least one point  on the (110) plane*. To 
determine a structure having one of these space groups 

* Throughout this discussion it is understood that the origin 
of coordinates of the cube is placed in accordance with the 
Space Group Tables given in International Tables for X.ray 
Crystallography (1952). The (100) plane and the (110) plane 
referred to below are always those passing through the origin 
of the cube. 

it  is necessary only to determine the coordination 
shell around each atom or available site tha t  is located 
on the (110) plane. 

A similar rule applies to structures of the space 
groups $4132, P4a32, P4132, Fd3m, Fd3v except tha t  
the special positions of the kind t ,  x, ~_+ x, etc. even- 
tual ly  may  have to receive special t reatment .  These 
positions are of such a nature,  however, tha t  they  
most likely will represent vertices of coordination 
shells around single atoms or available sites on the 
(110) plane, as will be seen in the following section. 
In  the twelve space groups just  referred to, the (110) 
plane shall be called ' the most useful plane'. 

Most of the remaining cubic space groups have two 
most useful planes, i.e. the (100) plane and (110) plane 
which will have to be investigated simultaneously. In  
some rare cases i t  may  be necessary to investigate one 
especially selected additional plane. 

The packing  m a p  

A means of recognizing the possible configurations of 
atoms around single atoms on the most useful plane 
is the packing map, an example of which is shown in 
Fig. 1. This map has been drawn for the (110) plane 
of a crystal  of space group Fd3m and cube edge 
ao--30.6 ~,  scale 1 /~= 1 cm on the original map. 

-g 

Fig. 1. Packing map for the (110) plane for a cube of edge 
a 0-- 30.6 A, space group Fd3m. 
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Fig. 2. The t runcated tetrahedron.  
Fig. 3. The cubo-octahedron. 

Fig. 4. The icosahedron. In  Figs. 2, 3, and 4 the most practical representation of the polyhedra with respect to packing maps 
is shown at (e) in each case. 

The points a and b are defined by the two eightfold 
positions, 000 etc. and 00½ etc. respectively; c and d 
are points of the two 16-fold positions l l~ss etc. and 

~sl _a etc. respectively, which are centers of symmetry. 
The letters correspond to the notations used for this 
space group in the International Tables for X-ray Crys. 
tallography (1952), p. 340. The same notations are 
referred to below. 

The lines e and f are the loci of points of one degree 
of freedom, xxx, etc. and 00x, etc., described by the 
space group positions e and f respectively. If rigid 
spheres of radius 1.40 A, equal to one-half the average 
interatomic distance assumed in the crystal, are placed 
in these positions the centers of such spheres on the 
(110) plane are confined as indicated in Fig. 1. 

The points with two degrees of freedom, xxz, etc., 
positions g, are confined within the ten areas bounded 
by solid lines. The indentation t can be seen to be 
necessary to avoid interference of the spheres as they 
approach the center of symmetry. If G is the point 
xxz, its surrounding sphere of radius 1.40 cm is in 
contact with two equivalent contiguous spheres. The 
centers of these two spheres, which we call +G and 

- G ,  project normally onto the point _+ G. Since e is 
a threefold axis of symmetry, i.e. G, +G, and - G  
are at the corners of an equilateral triangle, the point 
_+ G is at a distance r/~3 from the line e, when G is 

at a distance 2r/~3 from e, where r is the radius of 
the spheres. The broken lines are referred to as 
'plus-minus' lines. A 'plus-minus' point can never lie 
between the solid line e and a broken line. 

Positions 96h(], x, ¼-x,  etc.) describe plus-minus 
points located on the broken lines h. These points are 
at the vertices of a hexagon around c, the size of which 
is determined by x. 

The areas limited by the dotted lines i and i '  and 
the solid line g' are 'plus-minus' fields for the general 
set 192i. The isosceles triangle of the sides i' can, 
again, be seen to be necessary to avoid interference 
of the spheres as they approach the center of symme- 
try. 

T h e  r e p r e s e n t a t i o n  o f  c o o r d i n a t i o n  p o l y h e d r a  

A few examples of how coordination polyhedra may 
be represented for their immediate recognition on 
the packing map are given below. 
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A very frequently observed coordination polyhedron 
is the symmetrical ly t runcated tetrahedron bounded 
by  four hexagons and four triangles (Fig. 2(a)). A 
mirror plane of the polyhedron traces the polygonal 
section shown in Figs. 2(c) and (d). The packing of 
atoms around such a polyhedron is explored by de- 
scribing around each vertex a sphere of a radius equal 
to the distance d between the vertex and the center 
of its assumed nearest neighbor outside the polyhedron. 
The section plane through such an arrangement of 
spheres is shown in Fig. 2(e). For the sake of simplicity 
all the distances are taken to be equal in this figure. 
The center of any circle of radius d is allowed to lie 
upon the circumference of any other circle but  not 
inside it, while the center of any 'plus-minus'  circle 
representing two contiguous spheres, one above and 
one below the section plane, is allowed to be as close 
as ½dV3 to the center of a circle of radius d. 

Fig. 3 shows a cubo-octahedron which is represented 
according to the same principles. Fig. 4 demonstrates 
how the icosahedron can be derived through deforma- 
tion of a cubo-octahedron. The three mutual ly  per- 
pendicular squares in Fig. 3(b) have been substi tuted 
by rectangles in Fig. 4(b); the sides of the rectangles 
are a and b = 1.62a, where the side b is also the diag- 
onal of the pentagon of side a as shown in Fig. 4(c). 
The representation of the icosahedron according to 
Fig. 4(e) was found to be the most perspicuous one 
with regard to packing maps so far explored. An 
example of the usefulness of this representation can 
also be found in an earlier paper (Samson, 1949), 
which, however, does not show the packing map. 

I t  is seen tha t  the circles around the vertices of the 
polyhedron shown in Fig. 2(e) leave a free area around 
the center, while in Fig. 3(e) the circles intersect at  
the center and in Fig. 4(e) overlap at  the center. This 
feature demonstrates the metrical nature of these 
polyhedra. With twelve contiguous spheres of equal 
size at  the vertices of the t runcated tetrahedron, it  
is possible to accommodate a sphere 34.5% larger in 
radius at  the center, since (rcent/rvert) = (V11/V 2) - 1 = 
1.345 (Fig. 2(e)) while for the icosahedron the central 
sphere is nearly 10% smaller than  the sphere of the 
vertex (Pauling, 1947). The cubo-octahedron corre- 
sponds to a radius ratio equal to unity, as is well 
known. 

Pack ing  of coord ina t ion  po lyhedra  

Fig. 5 represents a packing map of the ( l l0)  plane of 
a cube of edge a0=25.8 A, space group F43m, r= 
1.25 J~ (smallest assumed radius). Transparent tem- 
plates of polyhedra, such as are shown in Figs. 2 and 
3, are held in position with pins. 

The discs around el and _+el (Fig. 5) represent a 
positive tetrahedron, which is surrounded by a nega- 
tive tetrahedron (e~. and +_ e2). The discs at f l  are at  
the vertices of an octahedron. If more discs are added 
at  the points h~, h2, and ha and the corresponding 
_+ points, as is indicated with arrows, the arrangement 

of points around f l  is similar to tha t  shown in Fig. 
4(e); i.e. f l  is at  the center of an icosahedron. 

I t  is obvious tha t  t ransparent  templates of sections 
through large atom complexes commonly observed in 
complex metal structures may appreciably facilitate 
the search for a reasonable structural  motif. Such a 
template, which represents an atom complex observed 
in the y-brass type structures is placed at  point d, 
Fig. 5. 

T h e  der ivat ion  of s t r u c t u r e s  of e x t r e m e  
complex i ty  

General considerations 

There exist a number of cubic intermetallic com- 
pounds for each of which the number of possible 
atomic arrangements provided by the theory of space 
groups appears to be so great tha t  a successful a t tack 
on the problem of solving the structure may  seem 
hopeless. A more penetrating s tudy of such problems 
will, however, in general reveal tha t  there are only a 
very limited number of atomic arrangements tha t  are 
in accord with known fundamental structural  prin- 
ciples and accordingly need be considered as possible 
trial  structures, at  least in the initial stage. 

A profitable approach to the problem of finding a 
reasonable structural  motif is, of course, to consider 
structural  elements that  occur over and over again 
in crystals of complex intermetallic compounds. One 
of the most frequently observed coordination shells, 
the icosahedron, appears to be present in almost every 
complex cubic metal  crystal. I t  is accordingly ad- 
visable to explore the packing map with templates of 
the kind shown in Fig. 4(e) and to mark off the points 
and regions at  which such a coordination shell may  be 
accommodated. In  cases where there is reason to 
assume the simultaneous occurrence of certain types 
of smaller and larger coordination shells, i t  will be 
most profitable to use the largest possible shells as a 
starting point, as will be shown below. 

The derivation of the structure of NaCd2 
The assumption was made tha t  in the crystal of 

NaCd2 (space group Fd3m, cube edge a0=30.56 A) 
many of the large atoms, the sodium atoms, have 
sixteen ligates, twelve cadmium atoms tha t  are at  the 
vertices of a t runcated tetrahedron such as is shown 
in Fig. 2 and four sodium atoms tha t  are located out 
from the centers of the hexagons of the t runcated 
tetrahedron. The resulting polyhedron, in previous 
papers (Samson, 1958, 1961, 1962) referred to as the 
Friauf polyhedron, is very frequently observed in 
crystals containing atoms with metallic radii differ- 
ing by about 15 per cent or more from one another. 
I t  was first observed in the Friauf phases MgCu2 and 
MgZn2 (Friauf, 1927a, b). 

The packing map drawn for this crystal as shown in 
Fig. 1 was accordingly explored with the use of trans- 
parent templates of t runcated tetrahedra of approxi- 
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Fig. 6. The two  t r ia l  s t ructures derived for NaCd 2. (a) The eorreet structure.  (b) The ineorreet structure. 

The la t ter  mot i f  may app ly  to Mg2AI 8. 
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mate ly  the correct size as determined by  the chart 
itself (see template at  point b, Fig. 6a). 

I t  was quickly recognized tha t  the unit  cube is most 
efficiently packed if the t runcated te t rahedra are 
arranged according to Fig. 6(a). I t  is seen tha t  five 
such te t rahedra  are located about an approximate 
fivefold axis of symmet ry  through the two points B, 
which represent vertices of an octahedron of T~ sym- 
me t ry  such as is described in the previous paper 
(Samson, 1962). Such sets of five Friauf polyhedra, 
referred to as the F5 polyhedra, (Samson, 1962) share 
in their  turn  two additional Friauf polyhedra, one 
around b and the other around e2, Fig. 6(a), in ac- 
cordance with the 4 axis and the d-glide. This ar- 
rangement accounts for 1160 atoms distr ibuted over 
16 crystallographically different positions. 

The remaining space was next  explored with trans- 
parent  discs, which for simplicity have been part ial ly 
subst i tuted by circles in Fig. 6(a). Thirty-two more 
atoms (32e~) were thus located; these are indicated 
with the t ransparent  discs placed at  the points es. 
The unit  cube hence contains 1192 atoms. 

Fig. 6(a) describes completely the asymmetric unit  
of the crystal and provides the approximate positional 
parameters for each crystallographically different 
atom. For a more detailed description of the structure 
refer to the earlier paper (Samson, 1962). 

Fig. 6(b) represents an alternative trial  structure for 
NaCd~ which is as reasonable as the one just  described. 
I t  was obtained by rotating the Friauf polyhedron 
centered at  point b 90 ° around the [001] direction and 
rearranging some of the other atoms. This motif of 
structure places 1176 atoms per unit  cube, but  was 
found by comparison of observed and calculated X-ray 
data  not to be the motif of NaCd2. I t  remains, how- 
ever, a possible tr ial  structure for fl Mg2A13 (Samson, 
1962). 

I t  probably would have been possible to deduce the 
trial  structure by using icosahedra as a start ing point. 
Only a few icosahedra need be placed around their 
appropriate points, say the points c and gl, in order 
to suggest the existence of Friauf polyhedra, say 
around e9 and g9 (Fig. 6(a)), and from here on there is 
not too much reasonable lat i tude for positions of the 
remaining atoms if due judgment is applied. I t  is 
most convenient, however, to use as a starting point 
the largest atom complexes anticipated in the struc- 

ture, here the Friauf polyhedra. This becomes evident 
if one considers tha t  there are only 280 Friauf poly- 
hedra in the unit  of structure, but  tha t  these in their 
turn  produce 912 other polyhedra of which 528 are 
icosahedra. The icosahedron represents a 13-atom 
complex whereas a Friauf polyhedron accommodates 
17 atoms, i.e. 31% more. 

M i s c e l l a n e o u s  c o n s i d e r a t i o n s  

The technique suggested will in general require con- 
siderable judgment and knowledge of fundamental  
s tructural  principles. A few cases have been experi- 
enced, however, where the trial  structure for a fairly 
complex crystal, for instance the crystal of Mg3Cr2Alls 
(Samson, 1958), was almost rigorously derived with 
the technique described here. The derivation of this 
structure from Pat terson maps would certainly have 
required considerable effort and time, if it  would 
have been possible at  all. 

No test  has as yet  been made of the applicability 
of this method to structures other than  those of 
complex intermetallic compounds. I t  seems never- 
theless very likely tha t  it  will be useful for the s tudy 
of any cubic crystal tha t  is to be t reated by  the 
stochastic method, in particular if the structure is 
reasonably well packed, such as for example, structures 
of certain silicate minerals. 

I thank Prof. Linus Pauling for his interest  in this 
work. I also thank Prof. J. H. Sturdivant  for valuable 
suggestions and discussions. 
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